Tuesdays at 4:10 in 
For more information, contact

Fall 2014
December 9  Raffaele Romano (ISU) Geometric analysis of timeoptimal control of SU(2) operations
Poster
December 16 OPEN
Abstracts
December 9  Raffaele Romano (ISU) Geometric analysis of timeoptimal control of SU(2) operations
SU(2) operations describe the evolution of a two level quantum system. Their control is a fundamental step for implementing specific protocols in quantum information and computation.
While it is often assumed that these operations could be achieved in a vanishingly small time, this would require an infinite amount of energy, which is clearly unacceptable. In this talk I will describe some recent results on minimum time control of SU(2) operations when the controls are bounded.
By means of a suitable parameterization of SU(2), I will provide the complete characterization of the time evolution of the reachable sets, the system diameter and cut loci when two or three independent controls are used, and the system is possibly subject to a drift or arbitrary strength.
Ref: R. Romano, "Geometric analysis of minimum time trajectories for a twolevel quantum system" (arXiv:1410.4906)
December 2  Sarah Reznikoff (Kansas State University) An introduction to uniqueness theorems for graph algebras
The field of operator algebras is a branch of functional analysis which relies heavily on notions from linear algebra and abstract algebra. The study of combinatoriallydefined C*algebras, such as graph algebras, also invokes category theory and elementary graph theory. These algebras are particularly suitable for analysis, as many aspects of their structure can be read from combinatorial properties of the underlying graphlike objects.
In this talk, we will provide a brief introduction to C*algebras, a description of the construction of graph algebras, and a picture of the notion of (the more general) kgraph algebras. We'll go over the history of uniqueness theorems for these algebras, up to and including recent results proved in joint work with Jon Brown, Gabriel Nagy, Aidan Sims, and Dana Williams.
November 18 George Avalos (University of Nebraska) Concerning the qualitative and quantitative analysis of a certain fluidstructure interactive PDE
In this talk we will present qualitative and numerical results for a
partial differential equation (PDE) system which models a fluidstructure
PDE of longstanding interest within the mathematical literature. The
coupled PDE model under discussion involves a Stokes or NavierStokes
system, which evolves on a three dimensional domain, interacting with a
fourth order plate equation which evolves on a
at portion of said fluid
domain. Among other technical diculties we note that, inasmuch as the fluid velocity does not vanish on all of the boundary, the associated pressure variable cannot be eliminated via the classic Leray Projector. We will
discuss how wellposedness of this fluidstructure dynamics is eventually attained via a certain variational \infsup" (or BabuskaBrezzi) formulation.
Subsequently, we will show how our constructive proof of wellposedness
naturally gives rise to a finite element method for numerically approximating solutions to the fluidstructure dynamics. Time permitting, we
will also discuss a result of backward uniqueness for this PDE system.
(This is joint work with Tom Clark.)
November 11 Chao Yang (LBNL) Fast numerical methods for electronic structure calculations
The KohnSham density functional theory (KSDFT) is the most widely used theory for studying electronic properties of molecules and solids. It reduces the need to solve a manybody Schrodinger's equation to the task of solving a system of singleparticle equations coupled through the electron density. These equations can be viewed as a nonlinear eigenvalue problem. Although they contain far fewer degrees of freedom, these equations are more difficult in terms of their mathematical structures. In this talk, I will give an overview on efficient algorithms for solving this type of problems. A key concept that is important for understanding these algorithms is a nonlinear map known as the Kohn Sham map. The ground state electron density is a fixed point of this map. I will describe properties of this map and its Jacobian. These properties can be used to develop effective strategies for accelerating Broyden's method for finding the optimal solution. They can also be used to reduce the computational complexity associated with the evaluation of the Kohn Sham map, which is the most expensive step in a Broyden iteration.
November 4  David Galvin (Notre Dame) Stirling numbers of graphs, and the normal ordering problem
The Stirling number of the second kind ${n \brace k}$ counts the number of partitions of a set of size $n$ into $k$ nonempty blocks. A graph theoretic interpretation of this quantity  the number of partitions of the empty graph of order $n$ into $k$ nonempty independent sets  admits a natural generalization to arbitrary graphs. A more analytic interpretation  the coefficient of $x^k$ in the polynomial $p(x)$ defined by $\left(x \frac{d}{dx}\right)^ne^x = p(x)e^x$  also admits a natural generalization, with $\left(x \frac{d}{dx}\right)^n$ replaced by an arbitrary word in the alphabet $\{x,d/dx\}$. This latter generalization is the {\em Weyl algebra normal ordering problem}.
I'll show how these two generalizations are closely related, and give a simple graph theoretic answer to the normal ordering problem. In part joint work with J. Engbers and J. Hilyard.
October 28 Garret Alston (U Oklahoma) Legendrian and Lagrangian invariants
A symplectic manifold is an even dimensional manifold M along with a closed, nondegenerate 2form. It is the generalization of the notion of phase space (set of all positions and velocities of a system) from classical mechanics (in physics). The odddimensional analog is known as a contact manifold. One way to try to understand these types of manifolds is to study certain types of submanifolds called Lagrangians (in the symplectic case) and Legendrians (in the contact case). In this talk I will explain some invariants that are used to study these submanifolds. I will begin by explaining the simplest case: Chekanov's dga for Legendrian knots in R^3. This will involve knot diagrams and simple calculations that everyone can follow along with. After that, I will sketch the general picture a little bit and explain how these invariants help answer interesting questions in symplectic and contact geometry.
October 21 Chao Zhu (UWMilwaukee) On linear programing approach to inventory control problems
This work deals with inventory control problems under the discounted criterion. The objective is to minimize the discounted total holding and ordering costs. In contrast with the usual dynamical programming approach, this work first imbeds the inventory control problem into an infinitedimensional linear program over a space of measures and then reduces the linear program to a simpler nonlinear optimization. This approach not only determines the value of the inventory control problem but also identifies an optimal impulse control policy within restricted classes of control policies. Additional auxiliary and dual linear programs are introduced to verify the optimality of the impulse control policy in the general class of control policies. This is a joint work with Kurt Helmes (HumboldtUniversitat zu Berlin) and Richard Stockbridge (University of WisconsinMilwaukee).
October 17 (Friday)  Lili Ju (U So Carolina) Joint with CAM Fast and stable compact explicit integration factor based methods for semilinear parabolic equations
In this talk, we present an explicit exponential integration factor based method and its fast implementation for the solution of a wide class of semilinear parabolic equations including the AllenCahn equation as a special case. The method makes use of a stable splitting scheme, and combines compact representations of spatial difference operators on the regular mesh with accurate exponential time differences and multistep approximations. It can deal with stiff nonlinearity and both homogeneous and inhomogeneous boundary conditions of different types.
Various numerical experiments demonstrate efficiency and effectiveness of the proposed method for both linear and nonlinear model problems.
October 14 Alexander Roiterschtein (ISU) Local times of random walks on random media on Z and generalized RayKnight theorems
Generally speaking, RayKnight theorems describe the joint distribution of local times of Markov processes. For general onedimensional nearestneighbor random walks the theorem is in essence an encoding of the path of the random walk in terms of certain (nonstandard) branchingtype processes. This generic random walksbranching duality provides a very powerful tool for the study of random walks in random media. The bulk of the talk will be focused on asymptotic results for the maximum local time of excited random walks. I will also briefly discuss a work in progress on the number of most visited sites of a random walk in random environment.
September 30  Marcus Bishop (ISU): Quiver presentations of algebras associated with finite Coxeter groups
We will discuss the methods used to calculate quiver presentations of three algebras associated to finite Coxeter groups, namely, the descent algebra, the MantaciReutenauer algebra, and the zeroHecke algebra. The talk will be appropriate for a general audience and will introduce quivers, Coxeter groups, and all of the algebras discussed.
September 16  John Harding (New Mexico State): Quantum structures
Quantum structures is broad term for a wide range of areas. The common theme is the study of mathematical structures motivated by quantum mechanics. Such structures are studied both for their own interest, and for their application to quantum mechanics. They are frequently noncommutative or nondistributive versions of more classical objects.
In this talk I'll discuss some of my results in a number of different parts of quantum structures. This is a bit of a tour through several areas in the field, some quite old, others very current. We will cross a range of areas from operator algebras, to ordered structures and universal algebra, to category theory. Hopefully we provide a view of at least a portion of the topics of interest in this broad field.
Derrick Stolee: Automated discharging arguments for density problems in grids
Motivated by problems in wireless sensor networks, we consider minimizing the density of an identifying code in the hexagonal grid. An identifying code is a set of vertices where every vertex in the grid is uniquely identified by its adjacent code elements. While the minimum density of an identifying code is known for the square and triangular grids, there is still a gap between the upper and lower bounds for the hexagonal grid. Most lower bounds are found using discharging, which is a method to demonstrate the interaction between local structure and global averages.
Verifying a discharging proof is straightforward but usually very tedious. However, the creation of a discharging argument can be very mysterious. We will present a new computerautomated approach to not only verify discharging arguments, but also to generate them from scratch. A critical component to this method is solving a linear program that will assign value to the specified discharging rules, resulting in the best possible proof using those rules. Using this method, we find a new lower bound of 23/55 (approximately 0.4181818) on the density of an identifying code in the hexagonal grid, improving on the currentbest humancreated proofs.
Mridul Nandi (Indian Statistical Institute, Kolkata) Minimum number of multiplication to compute a Deltauniversal function
Delta universal function is a family of (multivariate polynomial) function with small differential probability. It is an important combinatorial object which has application in many areas of computer science. Any multivariate polynomial can be computed by a sequence of multiplication and addition. As multiplications are usually costlier operations than addition, we study the lower bounds on the number of multiplication to compute a delta universal hash function. In this talk, we obtain a concrete form of the lower bound. We also discuss memory requirement of computing such functions and how to tweak an optimum construction to reduce the memory constraint.
Archived
August 26  Mridul Nandi (Indian Statistical Institute, Kolkata) Minimum number of multiplication to compute a Deltauniversal function
Poster
September 2  Derrick Stolee: Automated discharging arguments for density problems in grids
Poster
September 16  John Harding (New Mexico State): Quantum structures
Poster
September 30  Marcus Bishop (ISU): Quiver presentations of algebras associated with finite Coxeter groups
Poster
October 14 Alexander Roitershtein (ISU) Local times of random walks on random media on Z and generalized RayKnight theorems
Poster
October 17 (Friday)  Lili Ju (U So Carolina) Joint with CAM Fast and stable compact explicit integration factor based methods for semilinear parabolic equations
Poster
October 21 Chao Zhu (UWMilwaukee) On linear programing approach to inventory control problems
Poster
October 21 Chao Zhu (UWMilwaukee) On linear programing approach to inventory control problems
Poster
October 28 Garret Alston (U Oklahoma) Legendrian and Lagrangian invariants
Poster
November 4  David Galvin (Notre Dame) Stirling numbers of graphs, and the normal ordering problem
Poster
November 11 Chao Yang (LBNL) Fast numerical methods for electronic structure calculations
Poster
November 18 George Avalos (University of Nebraska) Concerning the qualitative and quantitative analysis of a certain fluidstructure interactive PDE
Poster
December 2  Sarah Reznikoff (Kansas State University) An introduction to uniqueness
theorems for graph algebras
Poster