Applied Mathematics Qualifying Exam
Fall 2011

Tuesday, August 16th, 9:00 am – 1:00 pm; Room: Carver 305

Instructions

• Write your student ID number on every page that you turn in. Do NOT write your name on any sheet you turn in.
• Turn in solutions to 6 problems. No credit will be given for additional problems.
• Start each problem on a separate sheet of paper, with the problem number clearly stated at the top. SHOW ALL WORK.
• In the event that you believe a problem has a misprint or is improperly stated, explain your concerns to the proctor. Problems should not be interpreted trivially.

Problems

(1) Let \(K : L^2([0, 1]) \to L^2([0, 1]) \) be the (Volterra) integral operator
\[
Kf(x) = \int_0^x f(y) \, dy.
\]
(a) Find the adjoint operator \(K^* \).
(b) Determine the spectral radius of \(K \).

(2) Use the method of characteristics to solve:
\[
\frac{\partial u}{\partial t} + u^2 \frac{\partial u}{\partial x} = 0, \quad u(x, 0) = \sqrt{x}, \quad x > 0.
\]
Where is the solution defined?

(3) Let \(A \) be a bounded self-adjoint linear operator on a Hilbert space \(H \); that is \(A : H \to H \). The Rayleigh quotient, \(R(x) \), of \(A \) is defined by
\[
R(x) = \frac{\langle Ax, x \rangle}{\|x\|^2}, \quad x \in H, \; x \neq 0.
\]
Show that \(R(x) \) is Frechet differentiable for all \(x \neq 0 \), and find \(R'(x) \).
(4) Let \(\Omega = \{ (x, y) \in \mathbb{R}^2 : 0 < x, y < 1 \} \) denote the unit square in the first quadrant of the \(xy \)-plane, and let \(V = \{ u \in H^1(\Omega) : u = 0 \text{ if } x = 0, 1 \} \). Define the functional \(J : V \to V \) by
\[
J(u) = \iint_{\Omega} (|\nabla u|^2 + xu) \, dA.
\]
Find the Euler-Lagrange equations for a minimizer of \(J \). Determine the minimizer.

(5) Let \(f \in C[-1, 1] \) and consider the boundary value problem (BVP)
\[
-u'' = f, \quad -1 < x < 1, \\
u'(-1) + \alpha u(-1) = 0, \quad u'(1) - u(1) = 0,
\]
(a) What are the adjoint boundary conditions for this problem?
(b) Prove that for \(\alpha \neq 1 \) there is a unique solution of the BVP.
(c) Suppose \(\alpha = 1 \). Find solvability conditions on \(f \) so that the problem has solutions, and find a modified Green’s function for the BVP.

(6) Let \(\phi_n(x) = c_n (1 + \cos x)^n \), \(n \) a positive integer) where
\[
c_n = \frac{2^{n-1}}{\pi \binom{2n}{n}} \quad \text{so that} \quad \int_{-\pi}^{\pi} \phi_n(x) \, dx = 1.
\]
It can be shown that for any \(\delta > 0 \)
\[
\lim_{n \to \infty} \int_{\delta \leq |x| \leq \pi} \phi_n(x) \, dx = 0.
\]
Use this fact to show that every continuous \(2\pi \)-periodic function is the uniform limit of a sequence of trigonometric polynomials.

(7) Define the operator \(K \) on \(\mathcal{H} = L^2(0, \infty) \) by
\[
(Ku)(x) = \int_{0}^{\infty} (e^{-x-2y} + 2e^{-2x-y})u(y) \, dy.
\]
For which \(\lambda \in \mathbb{R} \) is there a unique solution in \(\mathcal{H} \) to \(Ku - \lambda u = f \) for all \(f \) in \(\mathcal{H} \)? For each \(\lambda \) that does not admit a unique solution, under what conditions on \(f \) does there exist (non-unique) solutions?
(8) (a) Let \(f \in L^1(\mathbb{R}^n) \), \(A \) be a nonsingular \(n \times n \) matrix and \(g(x) = f(Ax) \). Express the Fourier transform of \(g \) in terms of the Fourier transform of \(f \).

(b) Use the result in part a) to show that if \(f \) is radially symmetric (i.e. \(f(Ox) = f(x) \) for all \(x \) and any orthogonal matrix \(O \)) then so is its Fourier transform.

(9) (a) Prove that if \(M \) is a subspace of a Hilbert space \(\mathcal{H} \), then
\[
(M^\perp)^\perp = \overline{M}.
\]

(b) Prove that for any two subspaces \(M_1, M_2 \) of a Hilbert space \(\mathcal{H} \) we have
\[
(M_1 + M_2)^\perp = M_1^\perp \cap M_2^\perp.
\]

(c) Prove that for any two closed subspaces \(M_1, M_2 \) of a Hilbert space \(\mathcal{H} \) we have
\[
(M_1 \cap M_2)^\perp = M_1^\perp + M_2^\perp.
\]