Part I
1. Let G be a group and let M be a proper subgroup of G. Prove that M is a maximal normal subgroup of G if and only if G/M is simple.

2. Let G be a finite p-group acting on a finite set X. Define
$$X^G = \{x \in X : gx = x \text{ for all } g \in G\}.$$
(a) Show that $|X^G| \equiv |X| \text{ mod } p$.
(b) Show that the center of G has at least p elements.

3. Let G be a group of order p^2q where p and q are two distinct primes. Show that G has either a normal p-Sylow subgroup or a normal q-Sylow subgroup.

4. Let $f(x) = x^6 + x^3 + 1$.
(a) Factorize (Decompose) $f(x)$ into irreducible factors in $\mathbb{Z}_3[x]$.
(b) Show that $f(x)$ is irreducible in $\mathbb{Q}[x]$.

5. Find a generator for the ideal $(1 + 13i, 10 + 11i)$ in $\mathbb{Z}[i]$.

[For Part II, see overleaf.]
Part II
Let \mathbb{R} and \mathbb{C} denote the field of real and complex, respectively, and let $\mathbb{F}^{n \times n}$ and \mathbb{F}^n denote the set of all $n \times n$ matrices and that of all n-dimensional vectors over the field \mathbb{F}, respectively. A^* and u^* denote the (complex) conjugate transposes of $A \in \mathbb{C}^{n \times n}$ and the column vector $u \in \mathbb{C}^n$, respectively. Also I denotes the identity matrix of appropriate size.

6. Give a list of complex matrices such that every 3×3 complex matrix A satisfying $A^3 = 125I$ must be similar to exactly one of the matrices on your list.

7. a) Let $A \in \mathbb{C}^{n \times n}$ and let W be a nonzero A-invariant subspace of \mathbb{C}^n (that is, if $w \in W$ then $Aw \in W$). Prove that W contains an eigenvector of A.
 b) Give an example of a matrix $A \in \mathbb{R}^{n \times n}$ and a nonzero A-invariant subspace W of \mathbb{R}^n such that W does not contain an eigenvector of A.

8. Let $H \in \mathbb{C}^{n \times n}$ be a nonsingular Hermitian matrix. Define $m := \max_{\|u\|=1} u^*H^{-1}u$.
 Express m in terms of the eigenvalues of H.

9. Let $\theta \in [0, 2\pi]$ and $A = \frac{1}{2} \begin{pmatrix} 2 - \cos^2 \theta & \cos \theta \sin \theta & 0 \\ \cos \theta \sin \theta & 2 - \sin^2 \theta & 0 \\ 0 & 0 & -1 \end{pmatrix}$.
 (a) Calculate the eigenvalues and eigenvectors of A.
 (b) Calculate $\lim_{n \to \infty} A^n$.

10. Let A be a square complex matrix. Prove that A is a normal matrix if and only if A^* commutes with every matrix that commutes with A.